The aim of this paper is to propose an artificial intelligence based approach to moving object detection and tracking. Specifically, we adopt an approach to moving object detection based on self organization through artificial neural networks. Such approach allows to handle scenes containing moving backgrounds and gradual illumination variations, and achieves robust detection for different types of videos taken with stationary cameras. Moreover, for object tracking we propose a suitable conjunction between Kalman filtering, properly instanced for the problem at hand, and a matching model belonging to the class of Multiple Hypothesis Testing. To assess the validity of our approach, we experimented both proposed moving object detection and object tracking over different color video sequences that represent typical situations critical for video surveillance systems.

Object Motion Detection and Tracking by an Artificial Intelligence Approach

Maddalena Lucia;Petrosino Alfredo;
2008

Abstract

The aim of this paper is to propose an artificial intelligence based approach to moving object detection and tracking. Specifically, we adopt an approach to moving object detection based on self organization through artificial neural networks. Such approach allows to handle scenes containing moving backgrounds and gradual illumination variations, and achieves robust detection for different types of videos taken with stationary cameras. Moreover, for object tracking we propose a suitable conjunction between Kalman filtering, properly instanced for the problem at hand, and a matching model belonging to the class of Multiple Hypothesis Testing. To assess the validity of our approach, we experimented both proposed moving object detection and object tracking over different color video sequences that represent typical situations critical for video surveillance systems.
2008
Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/118972
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
social impact