Single-photon emission tomography (SPET), using technetium-99m hexamethylpropylene amine oxime, and positron emission tomography (PET), using oxygen-15 butanol were compared in six healthy male volunteers with regard to the mapping of resting state re- gional cerebral blood flow (rCBF). A computerized brain atlas was utilized for 3D regional analyses and comparison of 64 selected and normalized volumes of interest (VOIs). The normalized mean rCBF values in SPET, as compared to PET, were higher in most of the Brodmann areas in the frontal and parietal lobes (4.8% and 8.7% respectively). The average differences were small in the temporal (2.3%) and occipital (1.1%) lobes. PET values were clearly higher in small VOIs like the thalamus (12.3%), hippocampus (12.3%) and basal gan- glia (9.9%). A resolution phantom study showed that the in-plane SPET/PET system resolution was 11.0/7.5 mm. In conclusion, SPET and PET data demonstrated a fairly good agreement despite the superior spatial resolution of PET. The differences between SPET and PET rCBF are mainly due to physiological and physical factors, the da- ta processing, normalization and co-registration meth- ods. In order to further improve mapping of rCBF with SPET it is imperative not only to improve the spatial res- olution but also to apply accurate correction techniques for scatter, attenuation and non-linear extraction.
Resting state rCBF mapping with single-photon emission tomography and positron emission tomography: magnitude and origin of differences
Marco Pagani;
1998
Abstract
Single-photon emission tomography (SPET), using technetium-99m hexamethylpropylene amine oxime, and positron emission tomography (PET), using oxygen-15 butanol were compared in six healthy male volunteers with regard to the mapping of resting state re- gional cerebral blood flow (rCBF). A computerized brain atlas was utilized for 3D regional analyses and comparison of 64 selected and normalized volumes of interest (VOIs). The normalized mean rCBF values in SPET, as compared to PET, were higher in most of the Brodmann areas in the frontal and parietal lobes (4.8% and 8.7% respectively). The average differences were small in the temporal (2.3%) and occipital (1.1%) lobes. PET values were clearly higher in small VOIs like the thalamus (12.3%), hippocampus (12.3%) and basal gan- glia (9.9%). A resolution phantom study showed that the in-plane SPET/PET system resolution was 11.0/7.5 mm. In conclusion, SPET and PET data demonstrated a fairly good agreement despite the superior spatial resolution of PET. The differences between SPET and PET rCBF are mainly due to physiological and physical factors, the da- ta processing, normalization and co-registration meth- ods. In order to further improve mapping of rCBF with SPET it is imperative not only to improve the spatial res- olution but also to apply accurate correction techniques for scatter, attenuation and non-linear extraction.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


