Experimental measurements in terrestrial laboratory, space and astrophysical observations of variation and fluctuation of nuclear decay constants, measurements of large enhancements in fusion reaction rate of deuterons implanted in metals and electron capture by nuclei in solar core indicate that these processes depend on the environment where they take place and possibly also on the fluctuation of some extensive parameters and eventually on stellar energy production. Electron screening is the first important environment effect. We need to develop a treatment beyond the Debye-H¨uckel screening approach, commonly adopted within global thermodynamic equilibrium. Advances in the description of these processes can be obtained by means of q-thermostatistics and/or superstatistics for metastable states. This implies to handle, without ambiguities, the case q < 1.
Nuclear problems in astrophysical q-plasmas and environments
AM Scarfone
2009
Abstract
Experimental measurements in terrestrial laboratory, space and astrophysical observations of variation and fluctuation of nuclear decay constants, measurements of large enhancements in fusion reaction rate of deuterons implanted in metals and electron capture by nuclei in solar core indicate that these processes depend on the environment where they take place and possibly also on the fluctuation of some extensive parameters and eventually on stellar energy production. Electron screening is the first important environment effect. We need to develop a treatment beyond the Debye-H¨uckel screening approach, commonly adopted within global thermodynamic equilibrium. Advances in the description of these processes can be obtained by means of q-thermostatistics and/or superstatistics for metastable states. This implies to handle, without ambiguities, the case q < 1.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


