We study the sample-size dependence of the strength of disordered materials with a flaw, by numerical simulations of lattice models for fracture. We find a crossover between a regime controlled by the disorder and another controlled by stress concentrations, ruled by continuum fracture mechanics. The results are formulated in terms of a scaling law involving a statistical fracture process zone. Its existence and scaling properties are revealed only by sampling over many configurations of the disorder. The scaling law is in good agreement with experimental results obtained from notched paper samples.
Role of disorder in the size scaling of material strength
Zapperi S
2008
Abstract
We study the sample-size dependence of the strength of disordered materials with a flaw, by numerical simulations of lattice models for fracture. We find a crossover between a regime controlled by the disorder and another controlled by stress concentrations, ruled by continuum fracture mechanics. The results are formulated in terms of a scaling law involving a statistical fracture process zone. Its existence and scaling properties are revealed only by sampling over many configurations of the disorder. The scaling law is in good agreement with experimental results obtained from notched paper samples.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_3945-doc_12857.pdf
solo utenti autorizzati
Descrizione: AlavaPRL
Dimensione
1.05 MB
Formato
Adobe PDF
|
1.05 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


