We directly measure the chemical potential jump in the low-temperature limit when the filling factor traverses the nu=1/3 and nu=2/5 fractional gaps in two-dimensional (2D) electron system in GaAs/AlGaAs single heterojunctions. In high magnetic fields B, both gaps are linear functions of B with slopes proportional to the inverse fraction denominator, 1/q. The fractional gaps close partially when the Fermi level lies outside. An empirical analysis indicates that the chemical potential jump for an ideal 2D electron system, in the highest accessible magnetic fields, is proportional to q(-1)B(1/2).
Filling factor dependence of the fractional quantum hall effect gap
Pellegrini V;Beltram F;Biasiol G;Sorba L
2008
Abstract
We directly measure the chemical potential jump in the low-temperature limit when the filling factor traverses the nu=1/3 and nu=2/5 fractional gaps in two-dimensional (2D) electron system in GaAs/AlGaAs single heterojunctions. In high magnetic fields B, both gaps are linear functions of B with slopes proportional to the inverse fraction denominator, 1/q. The fractional gaps close partially when the Fermi level lies outside. An empirical analysis indicates that the chemical potential jump for an ideal 2D electron system, in the highest accessible magnetic fields, is proportional to q(-1)B(1/2).File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.