We present a Lattice Kinetic Monte Carlo study of the atomic evolution leading to {311} defects formation upon annealing of a damaged Si-crystal. Self-interstitial (I) agglomeration is modeled by using local interaction and considering the energetic cost to under/over coordinate the Si atoms belonging to an I-complex. The static properties of the I aggregates as derived by molecular dynamics calculations, in the two extreme regimes of very small and very large clusters, have been mapped in the model. The typical evolution of an excess of Si ions is characterized by three distinct stages: (1) the formation of clusters consisting of few interstitials in a over-coordination state, (2) their redistribution in larger agglomerates containing a few of these small I clusters all preserving their original structure, (3) a transition leading to Is rearrangement along the <110> chains, which are the structural units of {311} defects. The duration of the preliminary stages critically depends on temperature and density of the added atoms.

Monte Carlo analysis of the evolution from point to extended interstitial type defects in crystalline Silicon

A La Magna;S Libertino
2000

Abstract

We present a Lattice Kinetic Monte Carlo study of the atomic evolution leading to {311} defects formation upon annealing of a damaged Si-crystal. Self-interstitial (I) agglomeration is modeled by using local interaction and considering the energetic cost to under/over coordinate the Si atoms belonging to an I-complex. The static properties of the I aggregates as derived by molecular dynamics calculations, in the two extreme regimes of very small and very large clusters, have been mapped in the model. The typical evolution of an excess of Si ions is characterized by three distinct stages: (1) the formation of clusters consisting of few interstitials in a over-coordination state, (2) their redistribution in larger agglomerates containing a few of these small I clusters all preserving their original structure, (3) a transition leading to Is rearrangement along the <110> chains, which are the structural units of {311} defects. The duration of the preliminary stages critically depends on temperature and density of the added atoms.
2000
Istituto per la Microelettronica e Microsistemi - IMM
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/120188
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact