The design of a stigmatic grazing-incidence instrument for space applications to solar-imaging spectroscopy is presented. It consists of a double telescope and a spectrograph: Telescope I consists of a single cylindrical mirror with parabolic section, focusing the radiation on the entrance slit of the spectrograph in the spectral dispersion plane; telescope II consists of two cylindrical mirrors with aspherical section in a Welter configuration, focusing the radiation on the spectrograph focal plane in the direction perpendicular to the spectral dispersion plane. The spectrograph consists of a grazing-incidence spherical variable-line-spaced grating with flat-field properties. Telescope II is crossed with respect to the grating and telescope I; i.e., it is mounted with its tangential planes coincident with the grating equatorial plane. The spectrum is acquired by a detector mounted at near-normal incidence with respect to the direction of the exit beam. The spectral resolution is also preserved for off-axis angles. The effective collecting area of the instrument can be preserved by adoption of a nested configuration for telescope II without degradation of the spectral resolution.
Grazing-incidence telescope-spectrograph for space solar imaging spectroscopy
L Poletto;
2001
Abstract
The design of a stigmatic grazing-incidence instrument for space applications to solar-imaging spectroscopy is presented. It consists of a double telescope and a spectrograph: Telescope I consists of a single cylindrical mirror with parabolic section, focusing the radiation on the entrance slit of the spectrograph in the spectral dispersion plane; telescope II consists of two cylindrical mirrors with aspherical section in a Welter configuration, focusing the radiation on the spectrograph focal plane in the direction perpendicular to the spectral dispersion plane. The spectrograph consists of a grazing-incidence spherical variable-line-spaced grating with flat-field properties. Telescope II is crossed with respect to the grating and telescope I; i.e., it is mounted with its tangential planes coincident with the grating equatorial plane. The spectrum is acquired by a detector mounted at near-normal incidence with respect to the direction of the exit beam. The spectral resolution is also preserved for off-axis angles. The effective collecting area of the instrument can be preserved by adoption of a nested configuration for telescope II without degradation of the spectral resolution.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.