The detection of odorant molecules begins in the nasal epithelium where olfactory sensory neurons interact with odorant stimuli from the external world and produce electrical signals that are transmitted to the brain. Olfactory sensory neurons are small bipolar neurons with several fine cilia. The binding of odorant molecules to odorant receptor proteins in the cilia triggers an enzymatic cascade that leads to the onset of an inward ionic current, depolarization of the membrane and generation of action potentials that are conducted along the neuron's axon to the olfactory bulb, where further processing of odorant information occurs.

Responses of Isolated Olfactory Sensory Neurons to Odorants

Picco C;Gavazzo P;
1998

Abstract

The detection of odorant molecules begins in the nasal epithelium where olfactory sensory neurons interact with odorant stimuli from the external world and produce electrical signals that are transmitted to the brain. Olfactory sensory neurons are small bipolar neurons with several fine cilia. The binding of odorant molecules to odorant receptor proteins in the cilia triggers an enzymatic cascade that leads to the onset of an inward ionic current, depolarization of the membrane and generation of action potentials that are conducted along the neuron's axon to the olfactory bulb, where further processing of odorant information occurs.
1998
Istituto di Biofisica - IBF
978-3-642-63801-5
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/120318
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact