Floating Car Data (FCD) is currently collected by moving vehicles and uploaded to Internet-based processing centers through the cellular access infrastructure. As FCD is foreseen to rapidly become a pervasive technology, the present network paradigm risks not to scale well in the future, when a vast majority of automobiles will be constantly sensing their operation as well as the external environment and transmitting such information towards the Internet. In order to relieve the cellular network from the additional load that widespread FCD can induce, we study a local gathering and fusion paradigm, based on vehicle-to-vehicle (V2V) communication. We show how this approach can lead to significant gain, especially when and where the cellular network is stressed the most. Moreover, we propose several distributed schemes to FCD offloading based on the principle above that, despite their simplicity, are extremely efficient and can reduce the FCD capacity demand at the access network by up to 95%.

Offloading Floating Car Data

Marco Fiore;Francesco Malandrino
2013

Abstract

Floating Car Data (FCD) is currently collected by moving vehicles and uploaded to Internet-based processing centers through the cellular access infrastructure. As FCD is foreseen to rapidly become a pervasive technology, the present network paradigm risks not to scale well in the future, when a vast majority of automobiles will be constantly sensing their operation as well as the external environment and transmitting such information towards the Internet. In order to relieve the cellular network from the additional load that widespread FCD can induce, we study a local gathering and fusion paradigm, based on vehicle-to-vehicle (V2V) communication. We show how this approach can lead to significant gain, especially when and where the cellular network is stressed the most. Moreover, we propose several distributed schemes to FCD offloading based on the principle above that, despite their simplicity, are extremely efficient and can reduce the FCD capacity demand at the access network by up to 95%.
2013
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
978-1-4673-5827-9
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/120404
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact