We report a widely applicable and highly controlled approach, based on electron beam lithography (EBL), to interconnect single nano-objects, previously immobilized onto solid surfaces, and to investigate the transport properties at the level of single nanostructures. In particular, a three-step EBL-procedure was used for this purpose by patterning two planar contacts on the sides of an individual nano-object. To demonstrate this approach, we use two different kinds of active elements: a semiconductor nanocrystal (tetrapod) and a thin triangular gold nanoprism (NT). (c) 2007 Elsevier B.V. All rights reserved.
Interconnection of specific nano-objects by electron beam lithography - A controllable method
Della Torre A;Pompa PP;del Mercato LL;Krahne R;Maruccio G;Carbone L;Manna L;Rinaldi R;
2008
Abstract
We report a widely applicable and highly controlled approach, based on electron beam lithography (EBL), to interconnect single nano-objects, previously immobilized onto solid surfaces, and to investigate the transport properties at the level of single nanostructures. In particular, a three-step EBL-procedure was used for this purpose by patterning two planar contacts on the sides of an individual nano-object. To demonstrate this approach, we use two different kinds of active elements: a semiconductor nanocrystal (tetrapod) and a thin triangular gold nanoprism (NT). (c) 2007 Elsevier B.V. All rights reserved.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.