Some known models in phase separation theory (Hele-Shaw, nonlocal mean curvature motion) and their approximations by means of Cahn-Hilliard and nonlocal Allen-Cahn equations are proposed as a tool to generate planar curve-shortening flows without shrinking. This procedure can be seen as a level set approach to area-preserving geometric flows in the spirit of Sapiro and Tannenbaum [38], with application to shape recovery. We discuss the theoretical validation of this method and its implementation to problems of shape recovery in Computer Vision. The results of some numerical experiments on image processing are presented.

Area-preserving curve-shortening flows: from phase separation to image processing

March R
2002

Abstract

Some known models in phase separation theory (Hele-Shaw, nonlocal mean curvature motion) and their approximations by means of Cahn-Hilliard and nonlocal Allen-Cahn equations are proposed as a tool to generate planar curve-shortening flows without shrinking. This procedure can be seen as a level set approach to area-preserving geometric flows in the spirit of Sapiro and Tannenbaum [38], with application to shape recovery. We discuss the theoretical validation of this method and its implementation to problems of shape recovery in Computer Vision. The results of some numerical experiments on image processing are presented.
2002
Istituto Applicazioni del Calcolo ''Mauro Picone''
Planar curve evolution; phase separation theory; image processing
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/121013
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 88
social impact