A scaling approach to the simplest viscoresistive MI-ID model reveals that the Prandtl number acts only through the inertia term. When this term is negligible the dynamics is ruled by the Hartmann number H only. This occurs for the reversed field pinch dynamics as seen by numerical simulation of the model. When H is large the system is in a multiple helicity state. In the vicinity of H = 2500 the system displays temporal intermittency with laminar phases of quasi-single-helicity (SH) type. For lower H's two basins of SH are shown to coexist. SH regimes are of interest because of their nonchaotic magnetic field.

Bifurcation in Viscoresistive MHD: The Hartmann Number and the Reversed Field Pinch

S Cappello;
2000

Abstract

A scaling approach to the simplest viscoresistive MI-ID model reveals that the Prandtl number acts only through the inertia term. When this term is negligible the dynamics is ruled by the Hartmann number H only. This occurs for the reversed field pinch dynamics as seen by numerical simulation of the model. When H is large the system is in a multiple helicity state. In the vicinity of H = 2500 the system displays temporal intermittency with laminar phases of quasi-single-helicity (SH) type. For lower H's two basins of SH are shown to coexist. SH regimes are of interest because of their nonchaotic magnetic field.
2000
Istituto gas ionizzati - IGI - Sede Padova
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/121082
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 98
social impact