Nop56p was initially identified in yeast as the third common component of the ribonucleoprotein particles (snoRNPs) assembled on box C/D small nucleolar RNAs (snoRNAs). Thereafter, the characterization of Nop56p homologs in Archaea and in several eukaryotes pointed to the highly conserved structure of this factor. Studies in yeast indicate that Nop56 is not required for the stability of box C/D snoRNAs. Through the isolation of a Xenopus laevis Nop56 cDNA clone, we have been able to characterize the X. laevis Nop56 protein (XNop56p). We showed that it is a common component of X. laevis box C/D snoRNPs and that it displays the same electrophoretic mobility of p62 protein that we previously characterized as a box C/D snoRNP component, not essential for snoRNA stability in X. laevis. Mapping the 5Vend of X. laevis Nop56 transcript indicates that it starts with a pyrimidine tract and the analysis of genomic clones revealed a snoRNA encoded in one of NOP56 introns. Although these two characteristics could suggest that XNOP56 is a TOP gene, it is not translationally controlled in a growth-dependent manner. D 2002 Elsevier Science B.V. All rights reserved

Characterization of the sequences encoding for Xenopus laevis box C/D snoRNP Nop56 protein

Caffarelli E
2002

Abstract

Nop56p was initially identified in yeast as the third common component of the ribonucleoprotein particles (snoRNPs) assembled on box C/D small nucleolar RNAs (snoRNAs). Thereafter, the characterization of Nop56p homologs in Archaea and in several eukaryotes pointed to the highly conserved structure of this factor. Studies in yeast indicate that Nop56 is not required for the stability of box C/D snoRNAs. Through the isolation of a Xenopus laevis Nop56 cDNA clone, we have been able to characterize the X. laevis Nop56 protein (XNop56p). We showed that it is a common component of X. laevis box C/D snoRNPs and that it displays the same electrophoretic mobility of p62 protein that we previously characterized as a box C/D snoRNP component, not essential for snoRNA stability in X. laevis. Mapping the 5Vend of X. laevis Nop56 transcript indicates that it starts with a pyrimidine tract and the analysis of genomic clones revealed a snoRNA encoded in one of NOP56 introns. Although these two characteristics could suggest that XNOP56 is a TOP gene, it is not translationally controlled in a growth-dependent manner. D 2002 Elsevier Science B.V. All rights reserved
2002
Istituto di Diritto Agrario Internazionale e Comparato - IDAIC - Sede Firenze
Xenopus laevis
box C/D snoRNP
Nop56 protein
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/121256
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact