In this work we demonstrate the nanopatterning of nanocomposites made by luminescent zinc oxide nanoparticles and light-emitting conjugated polymers by means of soft molding lithography. Vertical nanofluidics is exploited to overcome the polymer transport difficulties intrinsic in materials incorporating nanocrystals, and the rheology, fluorescence, absolute quantum yield, and emission directionality of the nanostructured composites are investigated. We study the effect of patterned gratings on the directionality of light emitted from the nanocomposites, finding evidence of the enhancement of forward emitted light, due to the printed wavelength-scale periodicity. These results open new possibilities for the realization of nanopatterned devices based on hybrid organic-inorganic systems.
Soft Nanopatterning on Light-Emitting Inorganic-Organic Composites
Persano L;Camposeo A;Pisignano D
2008
Abstract
In this work we demonstrate the nanopatterning of nanocomposites made by luminescent zinc oxide nanoparticles and light-emitting conjugated polymers by means of soft molding lithography. Vertical nanofluidics is exploited to overcome the polymer transport difficulties intrinsic in materials incorporating nanocrystals, and the rheology, fluorescence, absolute quantum yield, and emission directionality of the nanostructured composites are investigated. We study the effect of patterned gratings on the directionality of light emitted from the nanocomposites, finding evidence of the enhancement of forward emitted light, due to the printed wavelength-scale periodicity. These results open new possibilities for the realization of nanopatterned devices based on hybrid organic-inorganic systems.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.