Au/TiOx/Pt(111) model catalysts were prepared starting from well characterized TiOx/Pt(111) ultrathin films, according to an established procedure consisting in a reactive evaporation of Ti, subsequent thermal treatment in O-2 or in UHV, and final deposition of submonolayer quantities of Au. Temperature Programmed Desorption measurements were performed to compare the interaction of CO in the case of two reduced TiOx/Pt(111) substrates (indicated as w-TiOx and w'-TiOx, being the former characterized by an ordered array of defects that can act as template for the deposition of a stable array of Au nanoparticles), with the case of a stoichiometric rect'-TiO2/Pt(111) substrate. It was found that in all cases CO is molecularly adsorbed and two different desorption peaks are detected: one at approximate to 140 K corresponding to CO desorption from less active adsorption sites (terraces) of the Au nanoparticles and one at approximate to 200 K corresponding to CO desorption from Au nanoparticles step sites. After annealing at 770 K, the high temperature CO desorption peak is still present in the case of the defective reduced w-TiOx phase, supporting the good templating and stabilizing effect of such phase. On the rect'-TiO2 stoichiometric phase, the CO uptake decreases after annealing but only to a minor extent.

Chemisorption of CO on Au/TiOx/Pt(111) Model Catalysts with Different Stoichiometry and Defectivity

Rizzi GA;Granozzi G
2008

Abstract

Au/TiOx/Pt(111) model catalysts were prepared starting from well characterized TiOx/Pt(111) ultrathin films, according to an established procedure consisting in a reactive evaporation of Ti, subsequent thermal treatment in O-2 or in UHV, and final deposition of submonolayer quantities of Au. Temperature Programmed Desorption measurements were performed to compare the interaction of CO in the case of two reduced TiOx/Pt(111) substrates (indicated as w-TiOx and w'-TiOx, being the former characterized by an ordered array of defects that can act as template for the deposition of a stable array of Au nanoparticles), with the case of a stoichiometric rect'-TiO2/Pt(111) substrate. It was found that in all cases CO is molecularly adsorbed and two different desorption peaks are detected: one at approximate to 140 K corresponding to CO desorption from less active adsorption sites (terraces) of the Au nanoparticles and one at approximate to 200 K corresponding to CO desorption from Au nanoparticles step sites. After annealing at 770 K, the high temperature CO desorption peak is still present in the case of the defective reduced w-TiOx phase, supporting the good templating and stabilizing effect of such phase. On the rect'-TiO2 stoichiometric phase, the CO uptake decreases after annealing but only to a minor extent.
2008
INFM
SINGLE-CRYSTAL SURFACES
ULTRATHIN TIOX FILMS
CARBON-MONOXIDE
GOLD
AU
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/121455
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact