We perform the quantitative evaluation of the entanglement dynamics in scattering events between two indistinguishable electrons interacting via the Coulomb potential in one- and two-dimensional semiconductor nanostructures. We apply a criterion based on the von Neumann entropy and the Schmidt decomposition of the global state vector suitable for systems of identical particles. From the time-dependent numerical solution of the two-particle wave function of the scattering carriers we compute their entanglement evolution for different spin configurations: two electrons with the same spin, with different spin, and singlet and triplet spin states. The procedure allows us to evaluate the mechanisms that govern entanglement creation and their connection with the characteristic physical parameters and initial conditions of the system. The cases in which the evolution of entanglement is similar to the one obtained for distinguishable particles are discussed.

Entanglement dynamics of electron-electron scattering in low-dimensional semiconductor systems

Bordone P;Bertoni A
2006

Abstract

We perform the quantitative evaluation of the entanglement dynamics in scattering events between two indistinguishable electrons interacting via the Coulomb potential in one- and two-dimensional semiconductor nanostructures. We apply a criterion based on the von Neumann entropy and the Schmidt decomposition of the global state vector suitable for systems of identical particles. From the time-dependent numerical solution of the two-particle wave function of the scattering carriers we compute their entanglement evolution for different spin configurations: two electrons with the same spin, with different spin, and singlet and triplet spin states. The procedure allows us to evaluate the mechanisms that govern entanglement creation and their connection with the characteristic physical parameters and initial conditions of the system. The cases in which the evolution of entanglement is similar to the one obtained for distinguishable particles are discussed.
2006
INFM
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/121558
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact