We present a new method to incorporate electrostatic interactions in coarse-grained representations of proteins. The model is based on a topologically reconstructed multipolar expansion of the all-atom centers of charge, specifically of the backbone dipoles and the polar or charged side chains. The reliability of the model is checked by studying different test cases, namely protein-cofactor/substrate interactions, protein large conformational changes, and protein-protein complexes. In all cases, the model quantitatively reproduces the all-atom electrostatic field in both a static and a dynamic framework. The model is of general applicability and can be used to improve both full coarse-grained simulations and hybrid all-atom/coarse-grained multiscale approaches.

Topologically based multipolar reconstruction of electrostatic interactions in multiscale simulations of proteins

2008

Abstract

We present a new method to incorporate electrostatic interactions in coarse-grained representations of proteins. The model is based on a topologically reconstructed multipolar expansion of the all-atom centers of charge, specifically of the backbone dipoles and the polar or charged side chains. The reliability of the model is checked by studying different test cases, namely protein-cofactor/substrate interactions, protein large conformational changes, and protein-protein complexes. In all cases, the model quantitatively reproduces the all-atom electrostatic field in both a static and a dynamic framework. The model is of general applicability and can be used to improve both full coarse-grained simulations and hybrid all-atom/coarse-grained multiscale approaches.
2008
INFM
MOLECULAR-DYNAMICS SIMULATIONS
COARSE-GRAINED MODEL
MEMBRANE-PROTEASE-T
FORCE-FIELD
PSEUDOMONAS-AERUGINOSA
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/121608
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact