In this study the authors attempt to correlate kinetic constants for carbamylation of AChE, by a series of carbamate inhibitors, with the conformational positioning of Trp84 in transition state complexes of the same carbamates with Torpedo AChE, as obtained by computerized molecular modelling. They present evidence for changes in the distance of the carbamates from the center of the indole ring which can be correlated with the bimolecular rate constants for inhibition. As a result the greater the distance from Trp84, the smaller the bimolecular inhibition constant value, k1 (= k2/Ka), becomes. In conclusion, the value of the biinolecular rate constant for selected AChE inhibitors (structural changes that have been hypothesised or natural alkaloids of unknown activity) which possess similar size and rigidity, can be obtained. Under these conditions energy minimization alone seems to be sufficient even to accurately predict protein-substrate interactions that actually occur. Modelling studies also suggest that conformational re-orientation of Trp84 in the transition state could produce an overall movement of the Cys67-Cys94 loop.

Inhibition of AchE: structure -activity relationship among conformational transitio of Trp84 and bimolecular rate constant

M Patamia;
2000

Abstract

In this study the authors attempt to correlate kinetic constants for carbamylation of AChE, by a series of carbamate inhibitors, with the conformational positioning of Trp84 in transition state complexes of the same carbamates with Torpedo AChE, as obtained by computerized molecular modelling. They present evidence for changes in the distance of the carbamates from the center of the indole ring which can be correlated with the bimolecular rate constants for inhibition. As a result the greater the distance from Trp84, the smaller the bimolecular inhibition constant value, k1 (= k2/Ka), becomes. In conclusion, the value of the biinolecular rate constant for selected AChE inhibitors (structural changes that have been hypothesised or natural alkaloids of unknown activity) which possess similar size and rigidity, can be obtained. Under these conditions energy minimization alone seems to be sufficient even to accurately predict protein-substrate interactions that actually occur. Modelling studies also suggest that conformational re-orientation of Trp84 in the transition state could produce an overall movement of the Cys67-Cys94 loop.
2000
Acetylcholinesterase catalysis
Cholinesterase inhibition
Bimolecular rate constants
Conformations
Alzheimer's disease
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/121760
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact