The magnetization reversal properties of high-resolution Co dot arrays fabricated by nanoimprint lithography have been studied as a function of both diameter and thickness. Both vortex and single-domain states were observed by measuring the hysteresis loops, which result in an experimental phase diagram in the diameter-thickness plane. In the vortex state, magnetization reversal proceeds by vortex nucleation, growth, and subsequent annihilation under relatively high field. The vortex growth has been shown to be reversible in a wide field range, in agreement with micromagnetic simulations. Finally, a distribution of annihilation fields in patterned dot arrays was studied experimentally.
Size and thickness dependencies of magnetization reversal in Co dot arrays
M Natali;
2001
Abstract
The magnetization reversal properties of high-resolution Co dot arrays fabricated by nanoimprint lithography have been studied as a function of both diameter and thickness. Both vortex and single-domain states were observed by measuring the hysteresis loops, which result in an experimental phase diagram in the diameter-thickness plane. In the vortex state, magnetization reversal proceeds by vortex nucleation, growth, and subsequent annihilation under relatively high field. The vortex growth has been shown to be reversible in a wide field range, in agreement with micromagnetic simulations. Finally, a distribution of annihilation fields in patterned dot arrays was studied experimentally.File | Dimensione | Formato | |
---|---|---|---|
prod_230258-doc_57266.pdf
non disponibili
Descrizione: Size and thickness dependencies of magnetization reversal in Co dot arrays
Dimensione
608.4 kB
Formato
Adobe PDF
|
608.4 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.