We report a search for new gravitational physics phenomena based on Riemann-Cartan theory of general relativity including spacetime torsion. Starting from the parametrized torsion framework of Mao, Tegmark, Guth, and Cabi, we analyze the motion of test bodies in the presence of torsion, and, in particular, we compute the corrections to the perihelion advance and to the orbital geodetic precession of a satellite. We consider the motion of a test body in a spherically symmetric field, and the motion of a satellite in the gravitational field of the Sun and the Earth. We describe the torsion field by means of three parameters, and we make use of the autoparallel trajectories, which in general differ from geodesics when torsion is present. We derive the specific approximate expression of the corresponding system of ordinary differential equations, which are then solved with methods of celestial mechanics. We calculate the secular variations of the longitudes of the node and of the pericenter of the satellite. The computed secular variations show how the corrections to the perihelion advance and to the orbital de Sitter effect depend on the torsion parameters. All computations are performed under the assumptions of weak field and slow motion. To test our predictions, we use the measurements of the Moon's geodetic precession from lunar laser ranging data, and the measurements of Mercury's perihelion advance from planetary radar ranging data. These measurements are then used to constrain suitable linear combinations of the torsion parameters.

Constraining spacetime torsion with the Moon and Mercury

March R;
2011

Abstract

We report a search for new gravitational physics phenomena based on Riemann-Cartan theory of general relativity including spacetime torsion. Starting from the parametrized torsion framework of Mao, Tegmark, Guth, and Cabi, we analyze the motion of test bodies in the presence of torsion, and, in particular, we compute the corrections to the perihelion advance and to the orbital geodetic precession of a satellite. We consider the motion of a test body in a spherically symmetric field, and the motion of a satellite in the gravitational field of the Sun and the Earth. We describe the torsion field by means of three parameters, and we make use of the autoparallel trajectories, which in general differ from geodesics when torsion is present. We derive the specific approximate expression of the corresponding system of ordinary differential equations, which are then solved with methods of celestial mechanics. We calculate the secular variations of the longitudes of the node and of the pericenter of the satellite. The computed secular variations show how the corrections to the perihelion advance and to the orbital de Sitter effect depend on the torsion parameters. All computations are performed under the assumptions of weak field and slow motion. To test our predictions, we use the measurements of the Moon's geodetic precession from lunar laser ranging data, and the measurements of Mercury's perihelion advance from planetary radar ranging data. These measurements are then used to constrain suitable linear combinations of the torsion parameters.
2011
Istituto Applicazioni del Calcolo ''Mauro Picone''
General Relativity
modified theories of gravity
torsion
Riemann-Cartan spacetime
Solar System experiments
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/122280
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact