We show that by decreasing the laser fluence it is possible to improve the oxidation process in manganite thin films under low background oxygen pressure, allowing the in situ use of conventional Reflection High Energy Electron Diffraction diagnostic. Films deposited at low fluence (corresponding to a deposition rate per pulse lower than 10(-2) unit cells per laser shot) show a two-dimensional growth mode and possess very good transport properties without the necessity of any further post-growth annealing treatment. A physical model, based on the plume-background interaction as a primary mechanism of film oxidation during growth, is proposed to explain the experimental findings.

High-quality in situ manganite thin films by pulsed laser deposition at low background pressures

Tebano A;Aruta C;Davidson B;
2006

Abstract

We show that by decreasing the laser fluence it is possible to improve the oxidation process in manganite thin films under low background oxygen pressure, allowing the in situ use of conventional Reflection High Energy Electron Diffraction diagnostic. Films deposited at low fluence (corresponding to a deposition rate per pulse lower than 10(-2) unit cells per laser shot) show a two-dimensional growth mode and possess very good transport properties without the necessity of any further post-growth annealing treatment. A physical model, based on the plume-background interaction as a primary mechanism of film oxidation during growth, is proposed to explain the experimental findings.
2006
INFM
METAL-INSULATOR-TRANSITION
MOLECULAR-BEAM EPITAXY
LA0.7SR0.3MNO3 FILMS
MAGNETIC-FIELD
MAGNETORESISTANCE
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/122320
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 22
social impact