Multiple sequence alignment on 73 proteins belonging to glycosyl hydrolase family 1 reveals the occurrence of a segment (83-124) in the enzyme sequences from hyperthermophilic archaea bacteria, which is absent in all the mesophilic members of the family. The alignment of the known three-dimensional structures of hyperthermophilic glycosidases with the known ones from mesophilic organisms shows a similar spatial organizations of beta-glycosidases except for this sequence segment whose structure is located on the external surface of each of four identical subunits, where it overlaps two alpha-helices. Site-directed mutagenesis substituting N97 or S101 with a cysteine residue in the sequence of beta-glycosidase from hyperthermophilic archaeon Sulfolobus solfataricus caused some changes in the structural and dynamic properties as observed by circular dichroism in far- and near-UV light, as well as by frequency domain fluorometry, with a simultaneous loss of thermostability. The results led us to hypothesize an important role of the sequence segment present only in hyperthermophilic beta-glycosidases, in the thermal adaptation of archaea beta-glycosidases. The thermostabilization mechanism could occur as a consequence of numerous favorable ionic interactions of the 83-124 sequence with the other part of protein matrix that becomes more rigid and less accessible to the insult of thermal-activated solvent molecules.

Dynamic fluorescence studies of beta-glycosidase mutants from Sulfolobus solfataricus: effects of single mutations on protein thermostability

Febbraio F;Nucci R
2003

Abstract

Multiple sequence alignment on 73 proteins belonging to glycosyl hydrolase family 1 reveals the occurrence of a segment (83-124) in the enzyme sequences from hyperthermophilic archaea bacteria, which is absent in all the mesophilic members of the family. The alignment of the known three-dimensional structures of hyperthermophilic glycosidases with the known ones from mesophilic organisms shows a similar spatial organizations of beta-glycosidases except for this sequence segment whose structure is located on the external surface of each of four identical subunits, where it overlaps two alpha-helices. Site-directed mutagenesis substituting N97 or S101 with a cysteine residue in the sequence of beta-glycosidase from hyperthermophilic archaeon Sulfolobus solfataricus caused some changes in the structural and dynamic properties as observed by circular dichroism in far- and near-UV light, as well as by frequency domain fluorometry, with a simultaneous loss of thermostability. The results led us to hypothesize an important role of the sequence segment present only in hyperthermophilic beta-glycosidases, in the thermal adaptation of archaea beta-glycosidases. The thermostabilization mechanism could occur as a consequence of numerous favorable ionic interactions of the 83-124 sequence with the other part of protein matrix that becomes more rigid and less accessible to the insult of thermal-activated solvent molecules.
2003
Istituto di Biochimica delle Proteine - IBP - Sede Napoli
Beta-glicosidasi
Sulfolobus solfataricus
Termostabilità
Fluorescenza dinamica
Mutanti della proteina
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/122403
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact