The neutron cross-section of molecular hydrogen that is measured by deep inelastic neutron scattering (DINS) is compared with two distinct models. One is a generalization of the molecular Young and Koppel model (1964) that takes into account the modification to the translational kinetic energy that is induced by quantum effects. The second model assumes a free particle wave function for the final state of the proton (C. Andreani et al., 1995). The comparison between these two models, and with the experimental results, provides information on the crossover between the molecular and atomic regime of hydrogen in DINS.
Deep inelastic neutron scattering in condensed hydrogen
Bafile Ubaldo;Celli Milva;Zoppi Marco
1996
Abstract
The neutron cross-section of molecular hydrogen that is measured by deep inelastic neutron scattering (DINS) is compared with two distinct models. One is a generalization of the molecular Young and Koppel model (1964) that takes into account the modification to the translational kinetic energy that is induced by quantum effects. The second model assumes a free particle wave function for the final state of the proton (C. Andreani et al., 1995). The comparison between these two models, and with the experimental results, provides information on the crossover between the molecular and atomic regime of hydrogen in DINS.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.