Controlling the flow of energy in a random medium is a research frontier with a wide range of applications. As recently demonstrated, the effect of disorder on the transmission of optical beams may be partially compensated by wavefront shaping, but losing control over individual light paths. Here we demonstrate a novel physical effect whereby energy is spatially and spectrally transferred inside a disordered active medium by the coupling between individual lasing modes. We show that it is possible to transmit an optical resonance to a remote point by employing specific control over optical excitations, obtaining a random lasing system, which acts both as a switch and as an amplifier. Controlling the flow of energy in a random medium is a research frontier with a wide range of applications. As recently demonstrated, the effect of disorder on the transmission of optical beams may be partially compensated by wavefront shaping, but losing control over individual light paths. Here we demonstrate a novel physical effect whereby energy is spatially and spectrally transferred inside a disordered active medium by the coupling between individual lasing modes. We show that it is possible to transmit an optical resonance to a remote point by employing specific control over optical excitations, obtaining a random lasing system, which acts both as a switch and as an amplifier.

Switching and amplification in disordered lasing resonators

Marco Leonetti;Claudio Conti;
2013

Abstract

Controlling the flow of energy in a random medium is a research frontier with a wide range of applications. As recently demonstrated, the effect of disorder on the transmission of optical beams may be partially compensated by wavefront shaping, but losing control over individual light paths. Here we demonstrate a novel physical effect whereby energy is spatially and spectrally transferred inside a disordered active medium by the coupling between individual lasing modes. We show that it is possible to transmit an optical resonance to a remote point by employing specific control over optical excitations, obtaining a random lasing system, which acts both as a switch and as an amplifier. Controlling the flow of energy in a random medium is a research frontier with a wide range of applications. As recently demonstrated, the effect of disorder on the transmission of optical beams may be partially compensated by wavefront shaping, but losing control over individual light paths. Here we demonstrate a novel physical effect whereby energy is spatially and spectrally transferred inside a disordered active medium by the coupling between individual lasing modes. We show that it is possible to transmit an optical resonance to a remote point by employing specific control over optical excitations, obtaining a random lasing system, which acts both as a switch and as an amplifier.
2013
Istituto dei Sistemi Complessi - ISC
random medium
optical resonance
File in questo prodotto:
File Dimensione Formato  
prod_220285-doc_52023.pdf

accesso aperto

Descrizione: Switching and amplification in disordered lasing resonators
Tipologia: Versione Editoriale (PDF)
Licenza: Altro tipo di licenza
Dimensione 1.54 MB
Formato Adobe PDF
1.54 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/122934
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? ND
social impact