The design, synthesis, and metal-binding properties of DF3, a new de novo designed di-iron protein model are described (''DF'' represents due ferri, Italian for ''two iron,'' ''di-iron''). DF3 is the latest member of the DF family of synthetic proteins. They consist of helix-loop-helix hairpins, designed to dimerize and form an antiparallel four-helix bundle that encompasses a metal-binding site similar to those of non-heme carboxylate-bridged di-iron proteins. Unlike previous DF proteins, DF3 is highly soluble in water (up to 3 mM) and forms stable complexes with several metal ions (Zn, Co, and Mn), with the desired secondary structure and the expected stoichiometry of two ions per protein. UV-vis studies of Co(II) and Fe(III) complexes confirm a metal-binding environment similar to previous di- Co(II)- and di-Fe(III)-DF proteins, including the presence of a l-oxo-di-Fe(III) unit. Interestingly, UV-vis, EPR, and resonance Raman studies suggest the interaction of a tyrosine adjacent to the di-Fe(III) center. The design of DF3 was aimed at increasing the accessibility of small molecules to the active site of the four-helix bundle. Indeed, binding of azide to the di-Fe(III) site demonstrates a more accessible metal site compared with previous DFs. In fact, fitting of the binding curve to the Hill equation allows us to quantify a 150% accessibility enhancement, with respect to DF2. All these results represent a significant step towards the development of a functional synthetic DF metalloprotein.

Spectroscopic and metal-binding properties of DF3: an artificial protein able to accommodate different metal ions

Maglio Ornella;
2010

Abstract

The design, synthesis, and metal-binding properties of DF3, a new de novo designed di-iron protein model are described (''DF'' represents due ferri, Italian for ''two iron,'' ''di-iron''). DF3 is the latest member of the DF family of synthetic proteins. They consist of helix-loop-helix hairpins, designed to dimerize and form an antiparallel four-helix bundle that encompasses a metal-binding site similar to those of non-heme carboxylate-bridged di-iron proteins. Unlike previous DF proteins, DF3 is highly soluble in water (up to 3 mM) and forms stable complexes with several metal ions (Zn, Co, and Mn), with the desired secondary structure and the expected stoichiometry of two ions per protein. UV-vis studies of Co(II) and Fe(III) complexes confirm a metal-binding environment similar to previous di- Co(II)- and di-Fe(III)-DF proteins, including the presence of a l-oxo-di-Fe(III) unit. Interestingly, UV-vis, EPR, and resonance Raman studies suggest the interaction of a tyrosine adjacent to the di-Fe(III) center. The design of DF3 was aimed at increasing the accessibility of small molecules to the active site of the four-helix bundle. Indeed, binding of azide to the di-Fe(III) site demonstrates a more accessible metal site compared with previous DFs. In fact, fitting of the binding curve to the Hill equation allows us to quantify a 150% accessibility enhancement, with respect to DF2. All these results represent a significant step towards the development of a functional synthetic DF metalloprotein.
2010
Istituto di Biostrutture e Bioimmagini - IBB - Sede Napoli
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/123261
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 29
social impact