The amyloidogenic amino acid sequence Ac-VHSSNNFGAILSS-NH(2), corresponding to the 17-29 peptide region of human amylin (hIAPP17-29), was modified by grafting a hydrophilic PEG chain in order to obtain a novel class of peptides to be used as models to study the aggregation process of the full-length IAPP. The amphiphilic feature of the pegylated peptide fragment at the N-terminus (PEG-N-hIAPP17-29) drives the aggregation process toward stable micellar clusters without fibrillogenesis, despite the presence of P-sheet interaction between peptides at pH values higher than 4.0. The hIAPP17-29-C-PEG, in which the PEG moiety is linked to the C-terminus, does not possess analogous amphiphilic character and the ability of PEG in forming H-bonds with the solvent overcomes that of the peptide chain, thereby causing peptide flocculation. The comparison with the unmodified hIAPP17-29 and the rat's peptide sequence Ac-VRSSNNLGPGLPP-NH(2)(rIAPP17-29) revealed the crucial role of hydrogen bonding between peptide and solvent in determining the aggregate structure and preventing fibril formation, as well as the non-negligible effect of a small amount of organic solvent in the aqueous Solution which affects the aggregation process and rate.
Aggregation properties of the peptide fragments derived from the 17-29 region of the human and rat IAPP: a comparative study with two new PEG-conjugated variants of the human sequence.
A Mazzaglia;F Attanasio;G Pappalardo;
2010
Abstract
The amyloidogenic amino acid sequence Ac-VHSSNNFGAILSS-NH(2), corresponding to the 17-29 peptide region of human amylin (hIAPP17-29), was modified by grafting a hydrophilic PEG chain in order to obtain a novel class of peptides to be used as models to study the aggregation process of the full-length IAPP. The amphiphilic feature of the pegylated peptide fragment at the N-terminus (PEG-N-hIAPP17-29) drives the aggregation process toward stable micellar clusters without fibrillogenesis, despite the presence of P-sheet interaction between peptides at pH values higher than 4.0. The hIAPP17-29-C-PEG, in which the PEG moiety is linked to the C-terminus, does not possess analogous amphiphilic character and the ability of PEG in forming H-bonds with the solvent overcomes that of the peptide chain, thereby causing peptide flocculation. The comparison with the unmodified hIAPP17-29 and the rat's peptide sequence Ac-VRSSNNLGPGLPP-NH(2)(rIAPP17-29) revealed the crucial role of hydrogen bonding between peptide and solvent in determining the aggregate structure and preventing fibril formation, as well as the non-negligible effect of a small amount of organic solvent in the aqueous Solution which affects the aggregation process and rate.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


