Emerging evidence indicates that activation of microglia, the immune cells of the brain, is strictly associated to both secretion of soluble molecules and release of extracellular membrane vesicles (EMVs) into the pericellular space. Through these processes, microglia heavily influence brain cell functions, either propagating inflammation and causing damage to neurons or playing a supportive, neuroprotective role. In this review, we highlight the emerging concepts related to vesicular mechanisms of secretion operating in microglial cells, with the aim of dissecting how microglia communicate with other cell types within the brain microenvironment in health and disease.

Classical and unconventional pathways of vesicular release in microglia

Michela Matteoli;Claudia Verderio
2013

Abstract

Emerging evidence indicates that activation of microglia, the immune cells of the brain, is strictly associated to both secretion of soluble molecules and release of extracellular membrane vesicles (EMVs) into the pericellular space. Through these processes, microglia heavily influence brain cell functions, either propagating inflammation and causing damage to neurons or playing a supportive, neuroprotective role. In this review, we highlight the emerging concepts related to vesicular mechanisms of secretion operating in microglial cells, with the aim of dissecting how microglia communicate with other cell types within the brain microenvironment in health and disease.
2013
Istituto di Neuroscienze - IN -
microglia
extracellular membrane vesicles
vesicular pathways of release
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/123579
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 76
  • ???jsp.display-item.citation.isi??? ND
social impact