By means of time-dependent density functional theory, we calculate the two-photon cross-sections for the lowest relevant excitations in some model chromophores of intrinsically fluorescent proteins. The two-photon strength of the first, one-photon active transition varies among the various chromophores, in line with experimental findings. Interestingly, additional transitions with large two-photon cross-sections are found in the 500-700 nm region arising from near-resonant enhancement, as revealed by few-state model analysis. Multiphoton excitation of fluorescent proteins in this spectral region can lead to relevant application for bioimaging.
Predictions of novel two-photon absorption bands in fluorescent proteins
2007
Abstract
By means of time-dependent density functional theory, we calculate the two-photon cross-sections for the lowest relevant excitations in some model chromophores of intrinsically fluorescent proteins. The two-photon strength of the first, one-photon active transition varies among the various chromophores, in line with experimental findings. Interestingly, additional transitions with large two-photon cross-sections are found in the 500-700 nm region arising from near-resonant enhancement, as revealed by few-state model analysis. Multiphoton excitation of fluorescent proteins in this spectral region can lead to relevant application for bioimaging.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.