Pemphigus vulgaris (PV) is a potentially fatal autoimmune disease that cause blistering of the skin and oral cavity. It is characterized by disruption of cell-cell adhesion within the suprabasal layers of epithelium, a phenomenon termed acantholysis Patients with PV develop IgG autoantibodies against normal constituents of the intercellular substance of keratinocytes. The mechanisms by which such autoantibodies induce blisters are not clearly understood. The qualitative analysis of such effects provides important clues in the search for a specific diagnosis, and the quantitative analysis of biochemical abnormalities is important in measuring the extent of the disease process, designing therapy and evaluating the efficacy of treatment. Improved diagnostic techniques could permit the recognition of more subtle forms of disease and reveal incipient lesions clinically unapparent, so that progression of potentially severe forms could be reversed with appropriate treatment. In this paper, we report the results of our micro-Raman spectroscopy study on tissue and blood serum samples from ill, recovered and under therapy PV patients. The complexity of the differences among their characteristic Raman spectra has required a specific strategy to obtain reliable information on the illness stage of the patients For this purpose, wavelet techniques and advanced multivariate analysis methods have been developed and applied to the experimental Raman spectra. Promising results have been obtained. © 2009 SPIE.
Oral pathology follow-up by means of micro-Raman spectroscopy on tissue and blood serum samples: An application of wavelet and multivariate data analysis
Camerlingo C;
2009
Abstract
Pemphigus vulgaris (PV) is a potentially fatal autoimmune disease that cause blistering of the skin and oral cavity. It is characterized by disruption of cell-cell adhesion within the suprabasal layers of epithelium, a phenomenon termed acantholysis Patients with PV develop IgG autoantibodies against normal constituents of the intercellular substance of keratinocytes. The mechanisms by which such autoantibodies induce blisters are not clearly understood. The qualitative analysis of such effects provides important clues in the search for a specific diagnosis, and the quantitative analysis of biochemical abnormalities is important in measuring the extent of the disease process, designing therapy and evaluating the efficacy of treatment. Improved diagnostic techniques could permit the recognition of more subtle forms of disease and reveal incipient lesions clinically unapparent, so that progression of potentially severe forms could be reversed with appropriate treatment. In this paper, we report the results of our micro-Raman spectroscopy study on tissue and blood serum samples from ill, recovered and under therapy PV patients. The complexity of the differences among their characteristic Raman spectra has required a specific strategy to obtain reliable information on the illness stage of the patients For this purpose, wavelet techniques and advanced multivariate analysis methods have been developed and applied to the experimental Raman spectra. Promising results have been obtained. © 2009 SPIE.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.