We present experiments on a superconductor-normal-metal electron refrigerator in a regime where single-electron charging effects are significant. The system functions as a heat transistor; i.e., the heat flux out from the normal-metal island can be controlled with a gate voltage. A theoretical model developed within the framework of single-electron tunneling provides a full quantitative agreement with the experiment. This work serves as the first experimental observation of Coulombic control of heat transfer and, in particular, of refrigeration in a mesoscopic system.
Heat transistor: Demonstration of gate-controlled electronic refrigeration
Giazotto F;
2007
Abstract
We present experiments on a superconductor-normal-metal electron refrigerator in a regime where single-electron charging effects are significant. The system functions as a heat transistor; i.e., the heat flux out from the normal-metal island can be controlled with a gate voltage. A theoretical model developed within the framework of single-electron tunneling provides a full quantitative agreement with the experiment. This work serves as the first experimental observation of Coulombic control of heat transfer and, in particular, of refrigeration in a mesoscopic system.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


