In the present paper, performances of compact fully integrated superconducting quantum interference device SQUID magnetometers, recently developed, have been investigated in view of their employment in large multichannel systems for biomagnetic imaging. The analysis has been focused on SQUID sensors having a pickup loop side length of 3 and 4 mm based on a design aimed to maximize the magnetic flux transferred from the detection coil to the SQUID in comparison with a magnetometer with 9 mm side length having a suitable sensitivity for biomagnetic applications. The performance study has been consisted in the computation of the magnetic responses to a current dipole which is the most fundamental approach used in biomagnetism. The results have shown that the dipole current sensitivity of 4 mm long side compact magnetometers is suitable for application in multichannel systems for magnetoencephalography and magnetocardiography

Performance of Compact Integrated Superconducting Magnetometers for Biomagnetism

Granata C;Vettoliere A;Rombetto S;Nappi C;Russo M
2008

Abstract

In the present paper, performances of compact fully integrated superconducting quantum interference device SQUID magnetometers, recently developed, have been investigated in view of their employment in large multichannel systems for biomagnetic imaging. The analysis has been focused on SQUID sensors having a pickup loop side length of 3 and 4 mm based on a design aimed to maximize the magnetic flux transferred from the detection coil to the SQUID in comparison with a magnetometer with 9 mm side length having a suitable sensitivity for biomagnetic applications. The performance study has been consisted in the computation of the magnetic responses to a current dipole which is the most fundamental approach used in biomagnetism. The results have shown that the dipole current sensitivity of 4 mm long side compact magnetometers is suitable for application in multichannel systems for magnetoencephalography and magnetocardiography
2008
Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello" - ISASI
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/124097
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact