The activity of different formulations of Candida antarctica lipase B (CALB), such as crude CALB, purified CALB, purified CALB lyophilized with PEG (CALB + PEG) or oleic acid (CALB + GA), and the commercial formulation Novozym 435, was determined in toluene, carbon tetrachloride, and 1,4-dioxane at various water activities (a(w)). The reaction between vinylacetate and l-octanol was used as the model reaction and both transesterification (formation of 1-octylacetate) and hydrolytic (formation of acetic acid from vinylacetate) activities were determined. For equal amounts of lipase protein, CALB + PEG land to a lesser extent CALB + OA) displayed higher activity than that of the other formulations; for instance, in toluene (a(w) < 0.1), it was 260-, 13-, and 1.8-fold more active than crude CALB, purified CALB, and Novozym 435, respectively. Moreover, the transesterification activity of CALB + PEG was of the same order of magnitude (51%) of the activity shown by the enzyme in the hydrolysis of vinylacetate in aqueous buffer. These results suggest that PEG and oleic acid could act as lyoprotectants, preventing the formation of intermolecular interactions during the lyophilization process that might be responsible for protein denaturation. No diffusional limitation was observed for CALB + PEG-catalyzed reactions. Purified CALB, in contrast to the other formulations, showed a marked activity increase (2.1 to 7.8-fold) as a function of a(w) and, in 1,4-dioxane, it was 3.5-fold more active when it was added to the solvent after previous dissolution of the lyophilized powder in water.

Activity of different Candida antarctica lipase B formulations in organic solvents

Secundo F;Carrea G;Varinelli D;Morrone R
2001

Abstract

The activity of different formulations of Candida antarctica lipase B (CALB), such as crude CALB, purified CALB, purified CALB lyophilized with PEG (CALB + PEG) or oleic acid (CALB + GA), and the commercial formulation Novozym 435, was determined in toluene, carbon tetrachloride, and 1,4-dioxane at various water activities (a(w)). The reaction between vinylacetate and l-octanol was used as the model reaction and both transesterification (formation of 1-octylacetate) and hydrolytic (formation of acetic acid from vinylacetate) activities were determined. For equal amounts of lipase protein, CALB + PEG land to a lesser extent CALB + OA) displayed higher activity than that of the other formulations; for instance, in toluene (a(w) < 0.1), it was 260-, 13-, and 1.8-fold more active than crude CALB, purified CALB, and Novozym 435, respectively. Moreover, the transesterification activity of CALB + PEG was of the same order of magnitude (51%) of the activity shown by the enzyme in the hydrolysis of vinylacetate in aqueous buffer. These results suggest that PEG and oleic acid could act as lyoprotectants, preventing the formation of intermolecular interactions during the lyophilization process that might be responsible for protein denaturation. No diffusional limitation was observed for CALB + PEG-catalyzed reactions. Purified CALB, in contrast to the other formulations, showed a marked activity increase (2.1 to 7.8-fold) as a function of a(w) and, in 1,4-dioxane, it was 3.5-fold more active when it was added to the solvent after previous dissolution of the lyophilized powder in water.
2001
Candida antarctica lipase B
organic solvents
poly(ethylene-glycol)
tramsesterification
water activity
File in questo prodotto:
File Dimensione Formato  
prod_229169-doc_56751.pdf

solo utenti autorizzati

Descrizione: Activity of different Candida antarctica lipase B formulations in organic solvents
Dimensione 135.1 kB
Formato Adobe PDF
135.1 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/124188
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact