The problemofmasstransferbetweenactivesolidparticlesandafluidinmultiparticlesystemsis examinedwithafocusonthestagnantandthelowReynoldsnumbercases.Thisproblemhasattracted significantattentionwithregardtooperationoffixedandfluidizedbeds.Itisrecognizedthatdifferent Sherwoodnumberscanbedefineddependingonthechoiceofthereferenceconcentrationdifference (drivingforce).Aneffective Sh has oftenbeenusedtoanalyzeexperimentaldatabasedonanoverall concentrationdifferenceacrossthebed.Alocal Sh can alsobeintroducedbasedonaconcentration differenceclosetotheactiveparticle.However,theuseofthesetwodifferentSherwoodnumbers impliesadifferentimplementationofthemassbalanceequations. The massbalanceequationsarehereanalyticallysolvedbothunderstagnantandnon-stagnant conditionsinamultiparticlesystemundersuitablesimplifyingassumptions.Equationsfortheeffective and localSherwoodnumbersarederivedforthegeneralcaseandfortheasymptoticlimits.Allowance is givenforthevariationofbedvoidageandvolumefractionofactiveparticlesinthebed.Itisshown that thelocal Sh only dependsongeometricalandfluid-dynamicsconsiderationsandaccordinglyhasa generalvalidity.Onthecontrary,theeffective Sh also dependsontheassumptionsmadeinderivingthe mass balanceequationsacrossthebed(e.g.,fluidplugflow).Theuseofthelocal Sh is therefore suggested. Resultsshowthatfor Re-0 thelimitingvalueofthelocal Sh is alwaysafinitenumber,whilethe effective Sh tendstozerolinearlywith Re. Itisshownthatthisresultissimplyaconsequenceofthe plug flowassumptionmadeinthebedmassbalance.Thegeneralexpressionsderivedherecompare very welltoexperimentaltrendsforthecasesoflargeReynoldsnumbersandoffewisolatedactive spheres immersedinabedofinertparticles,wheremostofthereportedexperimentaldatagather. Unfortunately,forthemostcontroversialcaseofverylow Re in bedsmadeentirelyofactiveparticlesno reliabledataappearstobeavailabletochecktheaccuracyoftheexpressions.

Particle-fluid mass transfer in multiparticle systems at low Reynolds numbers

F Scala
2013

Abstract

The problemofmasstransferbetweenactivesolidparticlesandafluidinmultiparticlesystemsis examinedwithafocusonthestagnantandthelowReynoldsnumbercases.Thisproblemhasattracted significantattentionwithregardtooperationoffixedandfluidizedbeds.Itisrecognizedthatdifferent Sherwoodnumberscanbedefineddependingonthechoiceofthereferenceconcentrationdifference (drivingforce).Aneffective Sh has oftenbeenusedtoanalyzeexperimentaldatabasedonanoverall concentrationdifferenceacrossthebed.Alocal Sh can alsobeintroducedbasedonaconcentration differenceclosetotheactiveparticle.However,theuseofthesetwodifferentSherwoodnumbers impliesadifferentimplementationofthemassbalanceequations. The massbalanceequationsarehereanalyticallysolvedbothunderstagnantandnon-stagnant conditionsinamultiparticlesystemundersuitablesimplifyingassumptions.Equationsfortheeffective and localSherwoodnumbersarederivedforthegeneralcaseandfortheasymptoticlimits.Allowance is givenforthevariationofbedvoidageandvolumefractionofactiveparticlesinthebed.Itisshown that thelocal Sh only dependsongeometricalandfluid-dynamicsconsiderationsandaccordinglyhasa generalvalidity.Onthecontrary,theeffective Sh also dependsontheassumptionsmadeinderivingthe mass balanceequationsacrossthebed(e.g.,fluidplugflow).Theuseofthelocal Sh is therefore suggested. Resultsshowthatfor Re-0 thelimitingvalueofthelocal Sh is alwaysafinitenumber,whilethe effective Sh tendstozerolinearlywith Re. Itisshownthatthisresultissimplyaconsequenceofthe plug flowassumptionmadeinthebedmassbalance.Thegeneralexpressionsderivedherecompare very welltoexperimentaltrendsforthecasesoflargeReynoldsnumbersandoffewisolatedactive spheres immersedinabedofinertparticles,wheremostofthereportedexperimentaldatagather. Unfortunately,forthemostcontroversialcaseofverylow Re in bedsmadeentirelyofactiveparticlesno reliabledataappearstobeavailabletochecktheaccuracyoftheexpressions.
2013
Istituto di Ricerche sulla Combustione - IRC - Sede Napoli
Mass transfer
Sherwood number
Multiphase flow
Diffusion
Packed bed
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/124282
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact