Two types of spongy polyurethane-polydimethylsiloxane blend (Cardiothane 51, Kontron Instruments, Inc., Everett, Mass.) vascular grafts with an internal diameter of 1.5 mm were fabricated by a spray, phase-inversion technique. Low-porosity grafts with hydraulic permeability of 2.7 ± 0.4 ml/min per square centimeter and medium-porosity grafts with hydraulic permeability of 39 ± 8 ml/min per square centimeter displayed good handling properties and suturability. Twelve straight low-porosity grafts, 17 straight medium-porosity grafts (1.5 to 2.0 cm in length), and one loop medium- porosity graft (10 cm in length) were implanted by the same surgeon end to end in the infrarenal aorta of 30 male Sprague-Dawley rats. Three months after implantation, patency was 8% for low-porosity grafts (1/12) and 76% for straight medium-porosity grafts (13/17). The loop medium-porosity graft was also patent. The sole patent low-porosity graft showed neointimal hyperplasia and incomplete endothelialization. All but one of the patent straight medium- porosity grafts showed a glistening and transparent neointima with complete endothelialization and no anastomotic hyperplasia. The loop medium-porosity graft displayed endothelialization from each anastomosis and in many islands in the middle portion of the graft, totaling 47% of the luminal surface by morphometric analysis. Thick mural thrombus, anastomotic hyperplasia, or aneurysm formation were not observed in any patent medium-porosity graft. These data indicate that in the rat aortic replacement model it is possible to achieve patency and a high degree of endothelialization in very small- diameter prostheses of appropriate porosity.

Very small-diameter polyurethane vascular prostheses with rapid endothelialization for coronary artery bypass grafting

Soldani G;
1993

Abstract

Two types of spongy polyurethane-polydimethylsiloxane blend (Cardiothane 51, Kontron Instruments, Inc., Everett, Mass.) vascular grafts with an internal diameter of 1.5 mm were fabricated by a spray, phase-inversion technique. Low-porosity grafts with hydraulic permeability of 2.7 ± 0.4 ml/min per square centimeter and medium-porosity grafts with hydraulic permeability of 39 ± 8 ml/min per square centimeter displayed good handling properties and suturability. Twelve straight low-porosity grafts, 17 straight medium-porosity grafts (1.5 to 2.0 cm in length), and one loop medium- porosity graft (10 cm in length) were implanted by the same surgeon end to end in the infrarenal aorta of 30 male Sprague-Dawley rats. Three months after implantation, patency was 8% for low-porosity grafts (1/12) and 76% for straight medium-porosity grafts (13/17). The loop medium-porosity graft was also patent. The sole patent low-porosity graft showed neointimal hyperplasia and incomplete endothelialization. All but one of the patent straight medium- porosity grafts showed a glistening and transparent neointima with complete endothelialization and no anastomotic hyperplasia. The loop medium-porosity graft displayed endothelialization from each anastomosis and in many islands in the middle portion of the graft, totaling 47% of the luminal surface by morphometric analysis. Thick mural thrombus, anastomotic hyperplasia, or aneurysm formation were not observed in any patent medium-porosity graft. These data indicate that in the rat aortic replacement model it is possible to achieve patency and a high degree of endothelialization in very small- diameter prostheses of appropriate porosity.
1993
Istituto di Fisiologia Clinica - IFC
File in questo prodotto:
File Dimensione Formato  
prod_227187-doc_55992.pdf

accesso aperto

Descrizione: Very small-diameter polyurethane vascular prostheses with rapid endothelialization for coronary artery bypass grafting
Dimensione 1.25 MB
Formato Adobe PDF
1.25 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/124568
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 31
social impact