The charge density in solids is a fundamental parameter. Here we demonstrate that the charge density can be determined by the use of angle resolved photoelectron spectroscopy. The method, which involves a Fourier-like transform from momentum space to real space, is demonstrated by utilizing soft x-ray angle resolved photoelectron spectroscopy to sample the complete three-dimensional Brillouin zone of copper. It is also shown that this can be done in an energy resolved way as to extract the charge density contribution from states of a particular energy.

Using High Energy Angle Resolved Photoelectron Spectroscopy to Reveal the Charge Density in Solids

2008

Abstract

The charge density in solids is a fundamental parameter. Here we demonstrate that the charge density can be determined by the use of angle resolved photoelectron spectroscopy. The method, which involves a Fourier-like transform from momentum space to real space, is demonstrated by utilizing soft x-ray angle resolved photoelectron spectroscopy to sample the complete three-dimensional Brillouin zone of copper. It is also shown that this can be done in an energy resolved way as to extract the charge density contribution from states of a particular energy.
2008
INFM
ELECTRONIC-STRUCTURE
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/124758
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact