We have studied the binding of NO to small Rh clusters, containing one to five atoms, using density functional theory in both spin-polarized and non-spin-polarized forms. We find that NO bonds more strongly to Rh clusters than it does to Rh(100) or Rh(111), suggesting that Rh clusters may be good catalysts for NO reduction. However, binding to NO also quenches the magnetism of the clusters. This (local) effect results in reducing the magnitude of the NO binding energy, and also washes out the clear size-dependent trend observed in the nonmagnetic case. Our results illustrate the competition present between the tendencies to bond and to magnetize, in small clusters. (c) 2008 American Institute of Physics.

Interplay between bonding and magnetism in the binding of NO to Rh clusters

de Gironcoli S;
2008

Abstract

We have studied the binding of NO to small Rh clusters, containing one to five atoms, using density functional theory in both spin-polarized and non-spin-polarized forms. We find that NO bonds more strongly to Rh clusters than it does to Rh(100) or Rh(111), suggesting that Rh clusters may be good catalysts for NO reduction. However, binding to NO also quenches the magnetism of the clusters. This (local) effect results in reducing the magnitude of the NO binding energy, and also washes out the clear size-dependent trend observed in the nonmagnetic case. Our results illustrate the competition present between the tendencies to bond and to magnetize, in small clusters. (c) 2008 American Institute of Physics.
2008
INFM
NITRIC-OXIDE
RHODIUM CLUSTERS
STRUCTURAL ISOMERS
METAL-CLUSTERS
DISSOCIATION
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/124761
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact