A set of nonlinear differential equations that describe moving relativistic solitons is investigated analytically and solved numerically. The influence of the ion motion on the soliton structure is investigated. It is demonstrated that, depending on the propagation velocity, relativistic solitary waves can occur in the form of bright solitons, dark solitons, or collisionless electromagnetic shock waves. In the limit of a low propagation velocity, a dark soliton can trap the ions and accelerate them. In the case of a bright soliton, the effects of ion dynamics limit the soliton amplitude. The constraint on the maximum amplitude is related to either the breaking of ion motion or the intersection of electron trajectories. The soliton breaking provides a new mechanism for ion and electron acceleration in the interaction of high-intensity laser pulses with plasmas. (C) 2001 MAIK "Nauka/Interperiodica".

Slow Electromagnetic Solitons in Electron-Ion Plasmas

D Farina;
2001

Abstract

A set of nonlinear differential equations that describe moving relativistic solitons is investigated analytically and solved numerically. The influence of the ion motion on the soliton structure is investigated. It is demonstrated that, depending on the propagation velocity, relativistic solitary waves can occur in the form of bright solitons, dark solitons, or collisionless electromagnetic shock waves. In the limit of a low propagation velocity, a dark soliton can trap the ions and accelerate them. In the case of a bright soliton, the effects of ion dynamics limit the soliton amplitude. The constraint on the maximum amplitude is related to either the breaking of ion motion or the intersection of electron trajectories. The soliton breaking provides a new mechanism for ion and electron acceleration in the interaction of high-intensity laser pulses with plasmas. (C) 2001 MAIK "Nauka/Interperiodica".
2001
Istituto di fisica del plasma - IFP - Sede Milano
__
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/125111
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 46
social impact