NMR spectroscopy is a powerful technique for investigating the structure and composition, as well as the physicochemical properties, of foodstuff. NMR-field cycling modality reports about the relaxation times of solvent molecules as a function of the applied magnetic field strength. In the case of aqueous solutions, this methodology is particularly valuable in assessing the interactions of water molecules with paramagnetic and large-size macromolecular systems. (1)H NMR field cycling relaxometry has been used to characterize traditional balsamic vinegars and balsamic vinegars of Modena. It has been found that the longitudinal relaxation time (T(1)) of the water proton resonance is mainly determined by the water molar fraction and the occurrence of dissolved macromolecules and paramagnetic metal ions. Actually, the observed 1H nuclear magnetic resonance dispersion (NMRD) profiles appear markedly affected by the formation of paramagnetic macromolecular adducts. It has been shown that counterfeit specimens can be identified on the basis of the comparison of their T(1) and T(2) (transverse relaxation time) values with respect to the corresponding values of genuine samples. For the latter ones, a relationship has been found that relates the observed T, to the age of the vinegar.

Relaxometric Studies for Food Characterization: The Case of Balsamic and Traditional Balsamic Vinegars

Consonni roberto;
2009

Abstract

NMR spectroscopy is a powerful technique for investigating the structure and composition, as well as the physicochemical properties, of foodstuff. NMR-field cycling modality reports about the relaxation times of solvent molecules as a function of the applied magnetic field strength. In the case of aqueous solutions, this methodology is particularly valuable in assessing the interactions of water molecules with paramagnetic and large-size macromolecular systems. (1)H NMR field cycling relaxometry has been used to characterize traditional balsamic vinegars and balsamic vinegars of Modena. It has been found that the longitudinal relaxation time (T(1)) of the water proton resonance is mainly determined by the water molar fraction and the occurrence of dissolved macromolecules and paramagnetic metal ions. Actually, the observed 1H nuclear magnetic resonance dispersion (NMRD) profiles appear markedly affected by the formation of paramagnetic macromolecular adducts. It has been shown that counterfeit specimens can be identified on the basis of the comparison of their T(1) and T(2) (transverse relaxation time) values with respect to the corresponding values of genuine samples. For the latter ones, a relationship has been found that relates the observed T, to the age of the vinegar.
2009
Istituto per lo Studio delle Macromolecole - ISMAC - Sede Milano
NMR
fast-field cycling relaxometry
nuclear magnetic resonance dispersion profile
balsamic vinegar
File in questo prodotto:
File Dimensione Formato  
prod_180895-doc_20099.pdf

solo utenti autorizzati

Descrizione: Relaxometric Studies for Food Characterization: The Case of Balsamic and Traditional Balsamic Vinegars
Dimensione 233.63 kB
Formato Adobe PDF
233.63 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/12603
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 27
social impact