Notothenioid teleosts underwent major modifications of their genome to adapt to the cooling of the Antarctic environment. In order to identify specific features of the Antarctic teleost immunoglobulin, transcripts encoding the constant region of the IgM heavy chain from 13 Antarctic and non-Antarctic notothenioid species were sequenced. The primary mRNA splicing for the membrane form was found to be atypical in the majority of Antarctic species, because it led to exclusion of two entire constant exons, and to inclusion of 39-nucleotide exons encoding an unusually long Extracellular Membrane-Proximal Domain (EMPD). Genomic DNA analysis revealed that each 39-nucleotide exon fell within a long sequence that was the reverse complement of an upstream region. Deduced amino acid sequence analysis lead to the identification of cysteine encoding codons in the 39-nucleotide exons, but not in the respective sequence counterpart, suggesting that these residues might play an important role in the folding of the EMPD.

Evolution of the Antarctic teleost immunoglobulin heavy chain gene

Coscia MR;De Santi C;Oreste U
2010

Abstract

Notothenioid teleosts underwent major modifications of their genome to adapt to the cooling of the Antarctic environment. In order to identify specific features of the Antarctic teleost immunoglobulin, transcripts encoding the constant region of the IgM heavy chain from 13 Antarctic and non-Antarctic notothenioid species were sequenced. The primary mRNA splicing for the membrane form was found to be atypical in the majority of Antarctic species, because it led to exclusion of two entire constant exons, and to inclusion of 39-nucleotide exons encoding an unusually long Extracellular Membrane-Proximal Domain (EMPD). Genomic DNA analysis revealed that each 39-nucleotide exon fell within a long sequence that was the reverse complement of an upstream region. Deduced amino acid sequence analysis lead to the identification of cysteine encoding codons in the 39-nucleotide exons, but not in the respective sequence counterpart, suggesting that these residues might play an important role in the folding of the EMPD.
2010
Istituto di Biochimica delle Proteine - IBP - Sede Napoli
Notothenioidei
Alternative mRNA splicing
Immunoglobulin gene structure
Cold adaptation
Antarctic teleost evolution
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/126418
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 17
social impact