A distance-based outlier detection method that finds the top outliers in an unlabeled data set and provides a subset of it, called outlier detection solving set, that can be used to predict the outlierness of new unseen objects, is proposed. The solving set includes a sufficient number of points that permits the detection of the top outliers by considering only a subset of all the pairwise distances from the data set. The properties of the solving set are investigated, and algorithms for computing it, with subquadratic time requirements, are proposed. Experiments on synthetic and real data sets to evaluate the effectiveness of the approach are presented. A scaling analysis of the solving set size is performed, and the false positive rate, that is, the fraction of new objects misclassified as outliers using the solving set instead of the overall data set, is shown to be negligible. Finally, to investigate the accuracy in separating outliers from inliers, ROC analysis of the method is accomplished. Results obtained show that using the solving set instead of the data set guarantees a comparable quality of the prediction, but at a lower computational cost.

Distance-Based Detection and Prediction of Outliers

Basta Stefano;Pizzuti Clara
2006

Abstract

A distance-based outlier detection method that finds the top outliers in an unlabeled data set and provides a subset of it, called outlier detection solving set, that can be used to predict the outlierness of new unseen objects, is proposed. The solving set includes a sufficient number of points that permits the detection of the top outliers by considering only a subset of all the pairwise distances from the data set. The properties of the solving set are investigated, and algorithms for computing it, with subquadratic time requirements, are proposed. Experiments on synthetic and real data sets to evaluate the effectiveness of the approach are presented. A scaling analysis of the solving set size is performed, and the false positive rate, that is, the fraction of new objects misclassified as outliers using the solving set instead of the overall data set, is shown to be negligible. Finally, to investigate the accuracy in separating outliers from inliers, ROC analysis of the method is accomplished. Results obtained show that using the solving set instead of the data set guarantees a comparable quality of the prediction, but at a lower computational cost.
2006
Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR
Distance-based outliers
outlier detection
outlier prediction
data mining
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/126614
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 217
  • ???jsp.display-item.citation.isi??? ND
social impact