In this paper, we propose a classification technique for Web pages, based on the detection of structural similarities among semistructured documents, and devise an architecture exploiting such technique for the purpose of information extraction. The proposal significantly differs from standard methods based on graph-matching algorithms, and is based on the idea of representing the structure of a document as a time series in which each occurrence of a tag corresponds to an impulse. The degree of similarity between documents is then stated by analyzing the frequencies of the corresponding Fourier transform. Experiments on real data show the effectiveness of the proposed technique.

Exploiting structural similarity for effective Web information extraction

Pontieri Luigi;
2007

Abstract

In this paper, we propose a classification technique for Web pages, based on the detection of structural similarities among semistructured documents, and devise an architecture exploiting such technique for the purpose of information extraction. The proposal significantly differs from standard methods based on graph-matching algorithms, and is based on the idea of representing the structure of a document as a time series in which each occurrence of a tag corresponds to an impulse. The degree of similarity between documents is then stated by analyzing the frequencies of the corresponding Fourier transform. Experiments on real data show the effectiveness of the proposed technique.
2007
Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/126651
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact