We perform a systematic slave-boson mean-field analysis of the three-band model for cuprates with first-principle parameters. Contrary to widespread belief based on earlier mean-field computations low doping stripes have a linear density close to 1/2 added hole per lattice constant. We find a dimensional crossover from 1D to 2D at doping ~0.1 followed by a breaking of particle-hole symmetry around doping 1/8 as doping increases. Our results explain in a simple way the behavior of the chemical potential, the magnetic incommensurability, and transport experiments as a function of doping. Bond centered and site-centered stripes become degenerate for small overdoping.
Metallic mean-field stripes, incommensurability and chemical potential in cuprates
Lorenzana J;
2002
Abstract
We perform a systematic slave-boson mean-field analysis of the three-band model for cuprates with first-principle parameters. Contrary to widespread belief based on earlier mean-field computations low doping stripes have a linear density close to 1/2 added hole per lattice constant. We find a dimensional crossover from 1D to 2D at doping ~0.1 followed by a breaking of particle-hole symmetry around doping 1/8 as doping increases. Our results explain in a simple way the behavior of the chemical potential, the magnetic incommensurability, and transport experiments as a function of doping. Bond centered and site-centered stripes become degenerate for small overdoping.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.