In this paper we define Dual-Compatible (DC) T-splines, and we prove that Analysis-Suitable (AS) T-splines are Dual-Compatible. We show that the classical construction of a dual basis for tensor-product T-splines easily generalizes to DC T-spline spaces, and we discuss in the last section of the paper how it paves the way to a mathematical theory of AS T-splines. (C) 2012 Elsevier B.V. All rights reserved.

Analysis-Suitable T-splines are Dual-Compatible

L Beirao da Veiga;A Buffa;G Sangalli
2012

Abstract

In this paper we define Dual-Compatible (DC) T-splines, and we prove that Analysis-Suitable (AS) T-splines are Dual-Compatible. We show that the classical construction of a dual basis for tensor-product T-splines easily generalizes to DC T-spline spaces, and we discuss in the last section of the paper how it paves the way to a mathematical theory of AS T-splines. (C) 2012 Elsevier B.V. All rights reserved.
2012
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Isogeometric analysis
Analysis-Suitable T-splines
Dual-Compatible T-splines
Dual basis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/127661
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 87
  • ???jsp.display-item.citation.isi??? 75
social impact