In this paper we define Dual-Compatible (DC) T-splines, and we prove that Analysis-Suitable (AS) T-splines are Dual-Compatible. We show that the classical construction of a dual basis for tensor-product T-splines easily generalizes to DC T-spline spaces, and we discuss in the last section of the paper how it paves the way to a mathematical theory of AS T-splines. (C) 2012 Elsevier B.V. All rights reserved.
Analysis-Suitable T-splines are Dual-Compatible
L Beirao da Veiga;A Buffa;G Sangalli
2012
Abstract
In this paper we define Dual-Compatible (DC) T-splines, and we prove that Analysis-Suitable (AS) T-splines are Dual-Compatible. We show that the classical construction of a dual basis for tensor-product T-splines easily generalizes to DC T-spline spaces, and we discuss in the last section of the paper how it paves the way to a mathematical theory of AS T-splines. (C) 2012 Elsevier B.V. All rights reserved.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
prod_228437-doc_92460.pdf
solo utenti autorizzati
Descrizione: Analysis-Suitable T-splines are Dual-Compatible
Dimensione
1.47 MB
Formato
Adobe PDF
|
1.47 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.