Here we present the direct observation of macroscopic quantum properties in an all high-critical-temperature superconductor d-wave Josephson junction. Although dissipation caused by low-energy excitations is expected to strongly suppress macroscopic quantum effects, we demonstrate energy level quantization in our d-wave Josephson junction. The result indicates that the role of dissipation mechanisms in high-temperature superconductors has to be revised, and it may also have consequences for the class of solid-state 'quiet' quantum bits with superior coherence time.

Quantum dynamics of a d-wave Josephson junction

Tafuri F;
2006

Abstract

Here we present the direct observation of macroscopic quantum properties in an all high-critical-temperature superconductor d-wave Josephson junction. Although dissipation caused by low-energy excitations is expected to strongly suppress macroscopic quantum effects, we demonstrate energy level quantization in our d-wave Josephson junction. The result indicates that the role of dissipation mechanisms in high-temperature superconductors has to be revised, and it may also have consequences for the class of solid-state 'quiet' quantum bits with superior coherence time.
2006
INFM
PHASE DIFFERENCE
QUBITS
STATES
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/127957
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact