Having confirmed that externally added L-lactate can enter cerebellar granule cells, we investigated whether and how L-lactate is metabolized by mitochondria from these cells under normal or apoptotic conditions. (1) L-lactate enters mitochondria, perhaps via an L-lactate/H+ symporter, and is oxidized in a manner stimulated byADP. The existence of an L-lactate dehydrogenase, located in the innermitochondrial compartment, was shown by immunological analysis. Neither the protein level nor the Km and Vmax values changed en route to apoptosis. (2) In both normal and apoptotic cell homogenates, externally added L-lactate caused reduction of the intramitochondrial pyridine cofactors, inhibited by phenylsuccinate. This process mirrored L-lactate uptake by mitochondria and occurred with a hyperbolic dependence on L-lactate concentrations. Pyruvate appeared outside mitochondria as a result of external addition of L-lactate. The rate of the process depended on L-lactate concentration and showed saturation characteristics. This shows the occurrence of an intracellular L-lactate/pyruvate shuttle, whose activity was limited by the putative L-lactate/pyruvate antiporter. Both the carriers were different from the monocarboxylate carrier. (3) L-lactate transport changed en route to apoptosis. Uptake increased in the early phase of apoptosis, but decreased in the late phase with characteristics of a non-competitive like inhibition. In contrast, the putative L-lactate/pyruvate antiport decreased en route to apoptosis with characteristics of a competitive like inhibition in early apoptosis, and a mixed non-competitive like inhibition in late apoptosis. © 2007 Elsevier B.V. All rights reserved.

Transport and metabolism of L-lactate occur in mitochondria from cerebellar granule cells and are modified in cells undergoing low potassium dependent apoptosis

Atlante A;de Bari L;Bobba A;Marra E;
2007

Abstract

Having confirmed that externally added L-lactate can enter cerebellar granule cells, we investigated whether and how L-lactate is metabolized by mitochondria from these cells under normal or apoptotic conditions. (1) L-lactate enters mitochondria, perhaps via an L-lactate/H+ symporter, and is oxidized in a manner stimulated byADP. The existence of an L-lactate dehydrogenase, located in the innermitochondrial compartment, was shown by immunological analysis. Neither the protein level nor the Km and Vmax values changed en route to apoptosis. (2) In both normal and apoptotic cell homogenates, externally added L-lactate caused reduction of the intramitochondrial pyridine cofactors, inhibited by phenylsuccinate. This process mirrored L-lactate uptake by mitochondria and occurred with a hyperbolic dependence on L-lactate concentrations. Pyruvate appeared outside mitochondria as a result of external addition of L-lactate. The rate of the process depended on L-lactate concentration and showed saturation characteristics. This shows the occurrence of an intracellular L-lactate/pyruvate shuttle, whose activity was limited by the putative L-lactate/pyruvate antiporter. Both the carriers were different from the monocarboxylate carrier. (3) L-lactate transport changed en route to apoptosis. Uptake increased in the early phase of apoptosis, but decreased in the late phase with characteristics of a non-competitive like inhibition. In contrast, the putative L-lactate/pyruvate antiport decreased en route to apoptosis with characteristics of a competitive like inhibition in early apoptosis, and a mixed non-competitive like inhibition in late apoptosis. © 2007 Elsevier B.V. All rights reserved.
2007
Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM)
mitochondria
L-lactate
transport
metabolism
apoptosis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/127993
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? ND
social impact