An experimental and numerical work has been performed to characterize the performance of a medium-size spark-ignition engine and the related gas-dynamic noise emitted at the intake mouth. The noise attenuation of the main component of the intake system, namely the air flow box, has been experimentally measured and compared to the numerical results obtained using a tri-dimensional code. Then, the 3D-CFD code has been used to improve the noise attenuation of the above component through the introduction of a Helmholtz and a column resonator along the inflow pipe. Both the base and the modified air box have been coupled to the engine, installed inside a vehicle. An experimental analysis has been carried out to measure the engine performance and the gasdynamic noise at the intake. Some comparisons have been then reported with the numerical results derived from a one-dimensional analysis of the whole engine. Finally, a time-step based, fully integrated 1D-3D analysis has been carried out to improve the accuracy of the numerical results.

The prediction of the performance and gasdynamic noise emitted by a medium-size spark-ignition engine by means of 1D and 3D analyses

Siano D
2007

Abstract

An experimental and numerical work has been performed to characterize the performance of a medium-size spark-ignition engine and the related gas-dynamic noise emitted at the intake mouth. The noise attenuation of the main component of the intake system, namely the air flow box, has been experimentally measured and compared to the numerical results obtained using a tri-dimensional code. Then, the 3D-CFD code has been used to improve the noise attenuation of the above component through the introduction of a Helmholtz and a column resonator along the inflow pipe. Both the base and the modified air box have been coupled to the engine, installed inside a vehicle. An experimental analysis has been carried out to measure the engine performance and the gasdynamic noise at the intake. Some comparisons have been then reported with the numerical results derived from a one-dimensional analysis of the whole engine. Finally, a time-step based, fully integrated 1D-3D analysis has been carried out to improve the accuracy of the numerical results.
2007
978-0-7680-1869-1
intake noise
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/128372
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? ND
social impact