Aqueous solutions of lactose and lysine were refluxed for up to 4 h without pH control. Samples were collected every hour, and the reaction was monitored by measuring the pH, the optical density at 420 nm, and the relative antioxidative efficiency (RAE). The greatest change in optical density and antioxidative efficiency occurred for the mixture heated for 4 h. The 4 h solution was separated into three fractions according to the molecular weights of the components and tested for RAE. The high molecular weight fraction was more colored, and it had the highest antioxidative activity. The low molecular weight fraction was separated by high-performance liquid chromatography (HPLC). RAE values were measured for each purified compound. HPLC coupled with diode array and electrospray mass spectrometry allowed a rapid screening of the solutions and a tentative identification of several peaks. Nuclear magnetic resonance analysis allowed the identification of galactosylisomaltol and pyrraline. The resonance assignments for these compounds were revised.

LC/MS analysis and antioxidative efficiency of Maillard reaction products from a lactose-lysine model system.

MONTI SM;
1999

Abstract

Aqueous solutions of lactose and lysine were refluxed for up to 4 h without pH control. Samples were collected every hour, and the reaction was monitored by measuring the pH, the optical density at 420 nm, and the relative antioxidative efficiency (RAE). The greatest change in optical density and antioxidative efficiency occurred for the mixture heated for 4 h. The 4 h solution was separated into three fractions according to the molecular weights of the components and tested for RAE. The high molecular weight fraction was more colored, and it had the highest antioxidative activity. The low molecular weight fraction was separated by high-performance liquid chromatography (HPLC). RAE values were measured for each purified compound. HPLC coupled with diode array and electrospray mass spectrometry allowed a rapid screening of the solutions and a tentative identification of several peaks. Nuclear magnetic resonance analysis allowed the identification of galactosylisomaltol and pyrraline. The resonance assignments for these compounds were revised.
1999
Istituto di Biostrutture e Bioimmagini - IBB - Sede Napoli
Maillard reaction
lysine
antioxidative efficiency
pyrraline
galactosylisomaltol
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/128373
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact