We demonstrate that room-temperature and low-pressure nanoimprint lithography techniques can be achieved by using Hybrane HS2550, a semi-crystalline hyperbranched resist polymer with a glass transition temperature below and a melting point above room temperature. Nanoimprint lithography at room temperature is possible with sub-100 nm resolution, as 75 nm line-and-spacing gratings were successfully fabricated with a tri-layer process and a metal lift-off. The melt viscosity of Hybrane HS2550 decreases drastically with temperature allowing nanoimprint experiments at low pressures, while maintaining imprint temperatures that are much lower than commonly required in nanoimprint technology.
Room-temperature and low-pressure nanoimprint lithography
Natali M;
2002
Abstract
We demonstrate that room-temperature and low-pressure nanoimprint lithography techniques can be achieved by using Hybrane HS2550, a semi-crystalline hyperbranched resist polymer with a glass transition temperature below and a melting point above room temperature. Nanoimprint lithography at room temperature is possible with sub-100 nm resolution, as 75 nm line-and-spacing gratings were successfully fabricated with a tri-layer process and a metal lift-off. The melt viscosity of Hybrane HS2550 decreases drastically with temperature allowing nanoimprint experiments at low pressures, while maintaining imprint temperatures that are much lower than commonly required in nanoimprint technology.File | Dimensione | Formato | |
---|---|---|---|
prod_231444-doc_57937.pdf
non disponibili
Descrizione: Room-temperature and low-pressure nanoimprint lithography
Dimensione
933.73 kB
Formato
Adobe PDF
|
933.73 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.