In eastern Elba Island (Tuscany, Italy), a shallow crustal level felsic, tourmaline-bearing, dyke-sill swarm of Late Miocene age is associated with abundant tourmaline-quartz hydrothermal veins and metasomatic masses. Development of these veins and masses in the host rocks demonstrates multiple hydro-fractur- ing by magmatic, boron-rich saline fluid. Tourmalines in felsic dykes are schorl, whereas in veins and metasomatic masses, tourmaline composition ranges from schorl-dravite through dravite to uvite. This compositional shift is evidence for an increasing contribution to the magmatic boron-rich fluids by a Mg-Ca-Ti-rich external component represented by biotite-rich and amphibolite host rocks. This system can be envisaged as an exposed proxy of the high temperature hydrothermal system presently active in the deepest part of the Larderello-Travale geothermal field (Tuscany).
Multiple hydro-fracturing by boron-rich fluids in the Late Miocene contact aureole of eastern Elba Island (Tuscany, Italy)
Dini A;
2008
Abstract
In eastern Elba Island (Tuscany, Italy), a shallow crustal level felsic, tourmaline-bearing, dyke-sill swarm of Late Miocene age is associated with abundant tourmaline-quartz hydrothermal veins and metasomatic masses. Development of these veins and masses in the host rocks demonstrates multiple hydro-fractur- ing by magmatic, boron-rich saline fluid. Tourmalines in felsic dykes are schorl, whereas in veins and metasomatic masses, tourmaline composition ranges from schorl-dravite through dravite to uvite. This compositional shift is evidence for an increasing contribution to the magmatic boron-rich fluids by a Mg-Ca-Ti-rich external component represented by biotite-rich and amphibolite host rocks. This system can be envisaged as an exposed proxy of the high temperature hydrothermal system presently active in the deepest part of the Larderello-Travale geothermal field (Tuscany).I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.