DNA mismatch recognition and binding in human cells has been thought to be mediated by the hMSH2 protein. Here it is shown that the mismatch-binding factor consists of two distinct proteins, the 100-kilodalton hMSH2 and a 160-kilodalton polypeptide, GTBP (for G/T binding protein). Sequence analysis identified GTBP as a new member of the MutS homolog family. Both proteins are required for mismatch-specific binding, a result consistent with the finding that tumor-derived cell lines devoid of either protein are also devoid of mismatch-binding activity.

GTBP, a 160-kilodalton protein essential for mismatch-binding activity in human cells.

Iaccarino I;
1995

Abstract

DNA mismatch recognition and binding in human cells has been thought to be mediated by the hMSH2 protein. Here it is shown that the mismatch-binding factor consists of two distinct proteins, the 100-kilodalton hMSH2 and a 160-kilodalton polypeptide, GTBP (for G/T binding protein). Sequence analysis identified GTBP as a new member of the MutS homolog family. Both proteins are required for mismatch-specific binding, a result consistent with the finding that tumor-derived cell lines devoid of either protein are also devoid of mismatch-binding activity.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/129070
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 487
  • ???jsp.display-item.citation.isi??? ND
social impact